3x^2-4000x+300000=0

Simple and best practice solution for 3x^2-4000x+300000=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-4000x+300000=0 equation:



3x^2-4000x+300000=0
a = 3; b = -4000; c = +300000;
Δ = b2-4ac
Δ = -40002-4·3·300000
Δ = 12400000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12400000}=\sqrt{40000*310}=\sqrt{40000}*\sqrt{310}=200\sqrt{310}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4000)-200\sqrt{310}}{2*3}=\frac{4000-200\sqrt{310}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4000)+200\sqrt{310}}{2*3}=\frac{4000+200\sqrt{310}}{6} $

See similar equations:

| 3(5x–10)+6=4(2x+1) | | 2x+5=4x−10 | | -x4+8x2-76=0 | | 10h+5=90 | | 20=(100(1/2)^(t/214) | | (3x-4)^(2)=25 | | 4(2x+1)=2(2x+5) | | 7x-(-2x+10)=53 | | 7(x+4)-5(x+3)+4-x=0 | | 3(2x-2/3)-7(x+1)=0 | | 3(x-3)-7(2x-8)-(x+1)=0 | | 10(x+4)-9(x-3)-1=8(x+3 | | (2x-4)+3(5-3x)=2 | | -6(3x-1)=30 | | k/9–1=10 | | 9x+4=7x+2 | | 4(2x-9)+31=7x-13-7+3(x+5) | | x/(-7-2)=10 | | 50=3x(20-x)2 | | -8(x-3)=-6(x+1) | | 3w+2/4=12 | | (2x-3)÷(3x+5)=2 | | (3x+5x)x+1=(2x+1)^2 | | (7x-5)²=16 | | 32x+8-15=160 | | 3(w+2)+4w=51 | | (2/5)x+2/3=3 | | z/7+1=6 | | 3/5x-15=1/5x+12 | | 7x-49=3x+60 | | 7x-26=7x-2 | | 10x-4=12x+14 |

Equations solver categories